Grafana监控可视化

前言

最近工作中越来越感受到监控对于查找问题的重要性,一个完备的链路监控对问题定位和趋势分析提效非常高。比如一条实时数据流,从数据采集到消费到入库各个阶段都有一些可观测性的指标(binlog 采集延迟,kafka-lag,读写 QPS,max-request-size,offset 趋势)。如果 kafka-lag 比较小并且 topic 读写 QPS没打太高,但是数据有延迟,这里大概率就是上游采集的问题。
这里借用 prometheus 官网的话介绍监控的作用。

  • 长期趋势分析:通过对监控样本数据的持续收集和统计,对监控指标进行长期趋势分析。例如,通过对磁盘空间增长率的判断,我们可以提前预测在未来什么时间节点上需要对资源进行扩容。
  • 对照分析:两个版本的系统运行资源使用情况的差异如何?在不同容量情况下系统的并发和负载变化如何?通过监控能够方便的对系统进行跟踪和比较。
  • 告警:当系统出现或者即将出现故障时,监控系统需要迅速反应并通知管理员,从而能够对问题进行快速的处理或者提前预防问题的发生,避免出现对业务的影响。
  • 故障分析与定位:当问题发生后,需要对问题进行调查和处理。通过对不同监控监控以及历史数据的分析,能够找到并解决根源问题。
    数据可视化:通过可视化仪表盘能够直接获取系统的运行状态、资源使用情况、以及服务运行状态等直观的信息。

prometheus

使用搜索:谷歌必应百度